1

Legame covalente

legame covalente pharmaceuticalchemistry.altervista.org

In generale gli ultimi elementi di ciascun periodo hanno tutti una grande tendenza ad acquistare elettroni, mentre i primi elementi di ciascun periodo presentano una forte tendenza a perdere elettroni. Quando atomi di questo tipo interagiscono tendono a scambiarsi elettroni per formare legami ionici.
Ma come possiamo spiegare il legame esistente tra due atomi che, trovandosi alla fine di un periodo hanno entrambi una forte tendenza ad acquistare elettroni? Come spieghiamo ad esempio il legame che tiene uniti due atomi di Cloro nella molecola biatomica Cl2?

Quando due atomi di Cloro si avvicinano ciascuno dei due tende a strappare l'elettrone all'altro, senza peraltro riuscirvi.

Ma l'attrazione reciproca di ciascun nucleo sull'elettrone dell'altro atomo agisce come una forza di legame che mantiene i due atomi uniti. I due atomi di Cloro “condividono” una coppia di elettroni e tale “condivisione” costituisce il legame covalente. La condivisione avviene tramite sovrapposizione e “fusione” dei due orbitali atomici che contengono ciascuno un singolo elettrone con formazione di un unico orbitale molecolare di legame.
In questo modo ora i due elettroni non appartengono più all'uno o all'altro atomo, ma ruotano entrambi intorno all'intera struttura molecolare biatomica.
Si dice che i due elettroni sono stati messi in comune o in compartecipazione.

Ciascun nucleo "vede" ora intorno a sè i 6 elettroni non condivisi più i 2 elettroni condivisi per un totale di 8 elettroni. La condivisione di una coppia di elettroni permette a ciascun atomo di Cloro di raggiungere la configurazione stabile dell’ottetto.  Alla molecola biatomica del Cloro viene assegnata la seguente formula di struttura
Cl - Cl
dove il trattino indica i due elettroni condivisi e quindi il legame covalente tra i due atomi di idrogeno.

Prendiamo ora in considerazione la molecola biatomica dell'Ossigeno O2. L'Ossigeno presenta 8 elettroni di cui 6 nel livello energetico più esterno. Quando due atomi di ossigeno si avvicinano ciascuno cerca di strappare all'altro due elettroni, senza riuscirvi, per raggiungere la configurazione dell'ottetto.
Il risultato è che in questo caso vengono messe in comune 2 coppie di elettroni con sovrapposizione di 2 coppie di orbitali e formazione di 2 orbitali di legame, ciascuno contenente una coppia di elettroni. Ciascun atomo di ossigeno ora "vede" intorno a sè 8 elettroni nel suo livello energetico più superficiale. La molecola di O2 è quindi tenuta insieme da un legame covalente doppio. La formula di struttura è
O = O
dove il doppio trattino indica i due legami.
Esistono anche legami covalenti tripli come nel caso dell'Azoto gassoso N2. Qui ciascun atomo di Azoto, possedendo solo 5 elettroni superficiali è costretto a condividerne 3 con un altro atomo di azoto per completare l'ottetto.
N ºN

I legami covalenti sono direzionali, nel senso che essi formano tra loro angoli ben determinati. Ad esempio l'angolo compreso tra i due legami Idrogeno-Ossigeno nell'acqua è di circa 105°.

Inoltre mentre i legami semplici permettono la libera rotazione degli atomi intorno all'asse di legame, i legami doppi e tripli non permettono rotazioni. La possibilità o meno di effettuare delle torsioni interne alle molecole ha delle conseguenze notevoli soprattutto per le grosse molecole organiche. Le proteine, ad esempio, macromolecole formate da migliaia di atomi, sono in grado di assumere strutture e funzioni specifiche proprio tramite rotazioni interne attorno agli assi di legame.