1

Alterazioni dei ritmi respiratori

Alterazioni dei ritmi respiratori pharmaceuticalchemistry.altervista.org

Un respiro non regolare, in condizioni patologiche, è segno che le strutture superiori al bulbo sono state danneggiate, poiché esse sono indispensabili alla regolazione precisa dell'alternanza espirazione/inspirazione. Il centro apneustico possiede neuroni che attivano il centro inspiratorio. Il centro pneumotassico possiede neuroni che inibiscono il centro apneustico. La collaborazione di questi due centri permette di avere un respiro regolare.
Se si impedisce al centro pneumotassico di agire, si avrà un respiro comandato essenzialmente dal centro apneustico, ossia costituito da rapide espirazioni e lunghe inspirazioni. Anche sezioni del nervo vago causano modificazioni della attività respiratoria: il ritmo della respirazione viene mantenuto, ma ne aumenta l'ampiezza. L'ampiezza verrebbe ulteriormente aumentata se venissero a mancare le informazioni dai chemocettori centrali.

Regolazione chimica della ventilazione

La regolazione chimica della ventilazione è responsabile degli adattamenti dell'organismo a seconda delle condizioni "ambientali" (situazione del PH, delle concentrazioni di O2 e CO2). La ventilazione aumenta all'aumentare del PH, raggiunti però PH troppo elevati la respirazione tende nuovamente a diminuire (condizioni di tossicità).
Anche l'incremento del lavoro muscolare provoca un aumento della respirazione (e della frequenza cardiaca), in modo che si possa far fronte alla maggior quantità di ossigeno richiesta dall'organismo. (Il PH arterioso si modifica, divenendo più acido*, solo in seguito ad un lavoro muscolare che porti la frequenza cardiaca a 120 o 130 battiti al minuto, poiché prima vari sistemi tampone come bicarbonato e fosfato, riescono a mantenerlo costante.
(*) la concentrazione sanguigna di H+, determinante l'acidità, come abbiamo visto, è proporzionale alla concentrazione di CO2

Il debito di ossigeno dopo uno sforzo

Il debito di ossigeno può essere spiegato in questo modo: la nostra fonte primaria di energia è costituita dall'ATP. Riserve troppo ingenti di ATP però impediscono il metabolismo cellulare, cosicché è preferibile formare dall' ATP + c dell' ADP e cP. Il composto cP si chiama fosfocreatina, e il suo legame è molto energetico, e "racchiude" l'energia prima presente dell'ATP. In condizioni di necessità dalla cP e dall'ADP si può ri-ottenere dell' ATP, da usare come fonte di energia. L'energia fornita dalla cP contenuta nei muscoli dura fino a 10 secondi circa, non di più. Per sforzi più prolungati la produzione di cP avviene tramite il metabolismo del glucosio e poi, quando questo sia esaurito, tramite il metabolismo dei grassi e delle proteine.
Una fonte continua di cP e glucosio è rappresentata dai prodotti del ciclo di Krebs, che è continuamente attivo nell'organismo. Esso tuttavia nel caso di sforzi improvvisi e intensi non riesce a fornire una sufficiente concentrazione di cP, cosicchè si deve ricorrere alla glicolisi anaerobica, che rende l'energia subito disponibile in grandi quantità. La glicolisi anaerobica però lascia anche dei "rifiuti" come l'acido piruvico, convertito poi in acido lattico. L'acido lattico libera degli ioni H+, e successivamente viene "immesso" dal cuore nel ciclo di Krebs e nel fegato, dove viene riconvertito in glicogeno.
Il ciclo di Krebs è in grado di elimare l'acido lattico, ma per "funzionare" ha bisogno di ossigeno. La respirazione affannosa che persiste dopo lo sforzo fisico è il segnale che il ciclo di Krebs stà lavorando. Esso è capace di ri-sintetizzare, partendo dall'acido lattico, cP e glucosio.